

John Stempien

AGR TRISO Fuels Program Review Idaho Falls, ID July 18-19, 2017

nl.gov

Outline

- AGR-2 irradiation experiment background
 - Fuel samples
 - Irradiation conditions
- Status of analyses on irradiation capsule components
- Fission product mass balance
- Fuel compact non-destructive/destructive analyses and safety testing
- Summary and future work

AGR-2 Irradiation

- TRISO fuel particles produced in engineering scale coater (6 in. diameter)
- Total of 6 capsules
- 4 AGR Program Capsules, total of 48 AGR-2 Compacts
 - 36 compacts with AGR-2 UCO fuel kernels (~3176 particles/compact)
 - 12 compacts with UO₂ fuel kernels (~1500 particles/compact) for comparison to UCO and to historic UO₂ data

AGR-2 Irradiation Test Train

AGR-2 Irradiation Temperature and Burnup

- Time-averaged, volume-averaged (TAVA) irradiation temperatures: 987 to 1296°C
- Burnup range: 7.3 to 13.2% fissions per initial metal atom (FIMA)
- AGR-2 UCO fuel lower burnup, but higher temperature than AGR-1

AGR-2 Components and Associated PIE

• Each AGR-2 irradiation capsule has the following components and analyses:

Fission Product Mass Balance Outside of Fuel

Capsule components from all capsules are analyzed for fission product inventory

PGS Helps Locate Potential Fuel Particle Defect

- PGS of graphite holder used to look for spots of elevated fission product activity, fuel compacts near hot spot can be targeted for additional PIE (e.g. Compact 2-2-3)
- Destructive PIE at ORNL found failed SiC layers in a few particles from Compact 2-2-3. Nickel contamination and migration from failed thermocouple near Compact 2-2-3 is believed to be the cause of these SiC failures. Not a fuel quality issue.

Precision gamma scanner (PGS)

Neutron Fluence Wires and Melt Wires

- Fluence wires counted at INL. Some sent to PNNL for comparison.
- Comparison of fluence derived from wires with predicted fluences in-progress
- Melt wires not successfully retrieved from AGR-2 holders; may attempt further inspections of holders for recovery

Prepared for the U.S. Depart under Contract DE-AC05-76	TIMENT OF		PNNL-69575				
	INTERO	FFICE MEMORAN	DUM	Idaho National Laborat	or INL		
PNNL An	Date:	November 10, 2016		INL - Mate	rials and Fu	els Comple	x
Monitors	To:	Phil L. Winston John D. Stempien Paul W. Humrickhouse Brian J. Storms	AT A	A	nalytical Labora	tory	
SUW-133	From:	David T. Miller DM	AL Log #: 99081 Login Name: AG	SPM # NA R-2 FLUX WIRES	al Keport	COC #: 1	NA
Analyst:	Subject:	RADIATION MEASURE RAY ANALYSIS OF THE	Requester: P. DEMI WINSTO	OWICZ, P. HUMRICKHOUSI N, J. STEMPIEN	E, D. LAUG, P.	Charge #: 10242	21420
Report Preparer:	The Advanced three filter sar counted these	Test Reactor (ATR) Comple nples each with an absorbed a wires both on a traditional hi	Facility: HFEF, Bidg Approved by Total Samples in Reg	ras Cummings	for Jeff Giglia	Date Received: 11-No Date: 1-2 344	ov-15 1:03:04 P
Technical Reviewer	of "Nb as we activity by its spectrometers	I as on two different low-ene emitted x-rays. We used exis , while on the LEPS, we dete	Sample ID: BOTFW Where Taken: HFEF	-13, AGR 2 FLUX WIR	Same	ling Date: 11/5/2015	
Quality Engineer:	uncertainty of deviate signifi	Since the source lacks a calil 3% based on the precision of cantly from Gaussian shape a	Description: SOLID V	ANADIUM CAPSULE WITH C	OBALT, IRON OR NIOE	BIUM WIRE (2MG EACH	1) INSIDE IT
May 2017	direct scaling which also inc	and chi-square minimization cluded an additional constant a rays (i.e. ⁹⁴ Nb). To control 1	Analytical Method	Analyte	Resul	t Units E	rror @ 2 Sigma
Acceptance by Rece	square minimi These results	ization with all results agreen also agree well with our stand		<u>Co-60</u> <u>Fe-59</u> Mn-54	<u>1.89e-1</u> < <u>3e-3</u> <2e-3	uCl/Sample uCl/Sample uCl/Sample	±3% N/A
Accepted by	The values in negligible for The RML corr	Table 1 reflect the time-of-co these long-lived isotopes.		Nb-94 Nb-95 Sc-46	<20-3 <20-3 <30-3	uCi/Sample uCi/Sample uCi/Sample	N/A N/A
	measurement counting syste	for the detector systems utilizens were "in control" for all a	Comments:	Ta-182 Counted 12-1-15 4:54PM	<u><6e-3</u>	uCi/Sample	<u>N/A</u>
	Please call if y report (D.T. N	you have any questions or nee filler, 3-4682).	Sample ID: BOTFW- Where Taken: HFEF	14, AGR 2 FLUX WIRE	Samp	ling Date: 11/5/2015	
	Attachment cc: L. D. S D. T. I	Smith, MS 7111 Miller Letter File [DTM (FLU	Analytical Method	Analyte	Result	t Units E	rror @ 2 Sigma
			<u>Gamma Spec</u>	<u>Co-60</u> Fe-59 <u>Mn-54</u> Nb-95	<u>2.37e+0</u> <u><8e-3</u> <u><8e-3</u> <u><7e-3</u> che-1	uCi/Sample uCi/Sample uCi/Sample uCi/Sample uCi/Sample	<u>±3%</u> <u>N/A</u> <u>N/A</u> N/A
				<u>Sc-46</u>	<98-3	uCi/Sample	N/A

Fuel Compact Analyses

- Majority of PIE focuses on fuel compacts
- Large test/exam matrix
 - Each capsule had different burnup/irradiation temperature ranges
 - One capsule had UO₂ fuel for comparing to AGR UCO fuel performance

12 Fuel Compacts per Capsule:

- Dimensional measurements
- Whole-compact PGS
- Burnup
- High-temperature safety testing
- Optical/electron microscopy
- Particle/Compact cross sectional analysis
- Re-irradiation
- Deconsolidation-leach-burn-leach (DLBL)
- Particle gamma counting

Fuel Compact PGS

Complete In-progress

Planned

•

12 Fuel Compacts per Capsule:

Idaho National Laboratory

- Whole-compact PGS
- Burnup by chemistry methods

- Estimate burnup
- Compare measured inventories to predicted (e.g. Ag-110m)

Fuel Compact Safety Testing, Destructive, and Microscopy

-										in-progress Comple								ea			Plar	nne	a																									
	Capsule 2 (UCO) Capsule 3 (UO ₂)												Capsule 5 (UCO)													Capsule 6 (UCO)																						
	2-1-1	2-1-2	2-1-3	2-2-1	2-2-2	2-2-3	2-3-1	2-3-2	2-3-3	2-4-1	2-4-2	2-4-3	3-1-1	3-1-2	3-1-3	3-2-1	3-2-2	3-2-3	3-3-1	3-3-2	3-3-3	3-4-1	3-4-2	3-4-3	5-1-1	5-1-2	5-1-3	5-2-1	5-2-2	5-2-3	5-3-1	5-3-2	5-3-3	5-4-1	5-4-2	5-4-3	6-1-1	6-1-2	6-1-3	6-2-1	6-2-2	6-2-3	6-3-1	6-3-2	6-3-3	6-4-1	6-4-2 2 1 2	6-4-3
Shipment # to ORNL	7	4		2	2	1	3	3					5	5					1	1		5	1					7	3	2			4	2	3					7	7	5			4		4	
Safety Testing 1600°C																																																
Safety Testing 1700°C																																																
Safety Testing 1800°C																																																
Safety Test (TBD)																																																
As-irradiated																																																
DLBL																																																
IMGA																																																
Basic micro analysis ^a																																																
Advanced microanalysis ^b																																																
Compact Ceramography																																																
Loose particle multi-level																																																
PIE Report																																																

DLBL: deconsolidation-leach-burn-leach IMGA: irradiated microsphere gamma analyzer ^a Optical microscopy and/or SEM/EDS

^b Techniques include: TEM, STEM, HRTEM, EFTEM, EELS, APT, EBSD,

EPMA, HRSTEM, HAADF, PED, etc. (See presentation from van Rooyen)

Idaho National Laboratory

Compact Safety Testing, Destructive, and Microscopy Cover Range of Irradiation Conditions

- Completed 10 safety tests (3 in FY17 for L2 Milestone to "complete safety testing of 2 compacts")
- Completed 5 as-irradiated analyses (including 4 compact ceramography), 7 more in-progress
- The following presentations will elaborate on these activities in more detail:
 - "Re-irradiation Testing", Paul Demkowicz
 - "AGR-2 Fuel Compact Destructive Exams", John Hunn
 - "AGR-2 Safety Testing", Bob Morris
 - "AGR Advanced Microscopy", Isabella van Rooyen
 - "Long duration heating tests for silver release at intermediate temperatures," Tyler Gerczak

AGR-2 Compact Ceramography

- Examined 538 UCO particles
 - Compacts 2-1-3, 2-4-3, and 5-1-3
- Examined 102 UO₂ particles
 - Compact 3-2-3
- Compared to AGR-1:

	AGR-1	AGR-2
Partial IPyC Tears (%)	2.3	3.5
Through-layer IPyC Fracture (%)	3.5	None
Complete and Partial Buffer-IPyC Separation (%)	94	100
Buffer Fracture (%)	23	20

- Evidence that longer fluidization time between buffer layer deposition and IPyC layer deposition during fabrication promotes buffer-IPyC separation
- Easy and complete buffer-IPyC separation desirable
- Partial separation concentrates stresses at IPyC layer
- Also observed decreasing buffer fracture frequency as irradiation temperature increased above 1080°C to 1220°C

Summary

- PGS has been used to identify compacts that may have degraded SiC layers
 - 5 Compacts (2-2-3, 5-2-3, 5-3-3, 6-3-3, and 6-2-3)
 - 2-2-3: possibly 1 as-fabricated TRISO defect and 3 -5 SiC failures due to Ni contamination from a failed thermocouple
 - 5-2-3: possibly 2 or 3 particles with failed coatings
 - Others still in analysis
- Flux wires retrieved and counted. Comparison to to model predictions in-progress
- Completed Compact Analyses/Tests:
 - PGS of all compacts
 - 10 safety tests
 - Cross-section ceramography showing desirable enhanced buffer-IPyC separation
 - 10 as-irradiated compact analyses (including compact ceramography)

Future Work

- Fission product mass balance: remaining planned work is burn-leach of graphite holders for Sr-90
- Destructive compact analyses:
 - Safety testing: *planning* to complete **at least 3 more** safety tests before end of FY18
 - As-irradiated: *planning* to complete **at least 4 more** before end of FY18
- Particle analyses:
 - *Planning* to do cross sectional analysis of 100 particles from each of 4 compacts for kernel swelling and buffer shrinkage (beginning in FY17)
 - **Continue** advanced microscopy of kernel and layer samples from particles from 2 compacts
 - Begin long-term (~1000 hrs +) heating test of loose particles for long-term fission product release measurements

Questions and Discussion

John StempienIdaho National Laboratoryjohn.stempien@inl.gov(208) 526-8410

AGR-2 Components and Associated PIE

• Each AGR-2 irradiation capsule has the following components and analyses:

Example of Recent AGR-2 FP Analysis

• Capsule 2: UCO, TAVA Temp 1194°C

• Capsule 3: UO₂, TAVA Temp 1045°C

